If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+36x-350=0
a = 2; b = 36; c = -350;
Δ = b2-4ac
Δ = 362-4·2·(-350)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-64}{2*2}=\frac{-100}{4} =-25 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+64}{2*2}=\frac{28}{4} =7 $
| 4x-3=3(2x-1)-1 | | 3x+2+5x-78=180 | | 5+10=-3(5x-5) | | 4x-2(x-4)=7+4x+11 | | 3(a+22)+12a=30 | | 4g+18=3g | | 1/5x+1/2x=7 | | 4(-2x-5)-3(x+4)=8(2x-1)-6 | | 5x+13=15x-6 | | 20+b=180 | | z/4+9=6 | | -13.2r=-14.52+11r | | 4/5n+5=20 | | 4x-9+2(3x+5)=-2(x+7) | | 6(x-6)+2=8x-13 | | 200+b=180 | | -2(3x+3)-15=-5x-10= | | -6(2p+8)=-144 | | -115=-6x-(-5+9x) | | 13x+9=6x-2 | | 0.4p+5.6=1.2p | | a/6+13=-2 | | 2x-25=2x-25 | | 9(z-3)=-8 | | -16+8=-2(x+8) | | 92.99*92.99a=0.89 | | 130+b=180 | | 7x=-175 | | x/7-2=-18 | | 140+51+4f+1=180 | | 2+15h=14+13h | | -5(3n-5)-6=109 |